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Abstract. The logic of constructing and tnterrclanng cla~sieal rrdiranonr ofihe dual space 
of SO(3) is exhibited. Analogies uith different methods of quantization of gauge theones 
are pointed oui. Thc analysis LS applied to su(3J to obtain cxisting realizations and IO 

construct new oner. Gelfand-Zrtlyn basis for the irreducible representations of SU(3) is 
explicitl) realizcd using polynomials in four variables ind positive or negative integral 
powers of a fifth variable. Another rcaliz3uon uses a spinor of SO(6t x SOl3, I ) .  These 
are the analogues of Scbwngcr-Bargmann construction for SU(2).  

1. Introduction 

In many problems involving compact Lie groups, it is found that only the SU(2)  case 
can be explicitly handled. This is despite the exhaustive study of representation theory. 
The stumbling block is the absence [l,  21 (except for SU(2))  of explicit and convenient 
realizations of the dual of Lie groups. The dual of a group is defined as the set of all 
equivalence classes of irreducible unitary representations of the group. We refer to 
any concrete realization of the dual as a model of the group in question (slightly 
altering the terminology of Gelfand et al [Z]). Also we call the space on which the 
model is realized, the ‘model space’. 

A glaring example of the difference between S U ( 2 )  and other compact groups is 
that of Clebsch-Gordan (CG) coefficients, which are needed in many applications. In 
SU(2)  case we have a simple and elegant generating function for these coe5cients [3] 
and this is made possible because of a convenient model. 

There are elegant models for other compact Lie groups using different approaches. 
See, for instance [4-91. But these do not appear to be tangible enough for specific 
applications, e.g. the CG coefficients. To clarify this, we may compare the situation 
with the SO(3)  case, which has three well known models. The model spaces for these 
three are: type I-homogeneous harmonic polynomials in three real variables; type 
11-spherical harmonics, i.e. functions on a 2-sphere; and type 111-homogeneous, 
analytic functions in two variables which is also related to the spinor representation 
of SO(3) and to the boson calculus. In contrast, in the SU(3) case, only the analogues 
of type I and type I1 are presented in the literature. Note that it is the type I11 model 
space which gives the generating function [3, IO] for the CG coefficients of SO(3) (and 
SU(2)  of course). Therefore an analogous construction is important for other groups. 

In this paper we carry out this construction for SU(3) .  We obtain a model which 
uses non-negative integral powers of four variables and (negative or positive) integral 
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powers of a fifth variable. This model is connected to the boson calculus for S U ( 3 )  
which we have developed from different considerations earlier [ 111. We also obtain 
another model which uses spinor representation of the group SO(6) x SO(3,l). In fact 
we obtain this model exactly following Cartan’s [12] development of the theory of 
spinors for SO(n) group, n arbitrary, starting from the n = 3 case. We expect our 
techniques can be generalized [4,9] to other groups. 

As mentioned above, both the earlier models and models we construct for SU(3) 
have exact parallels to the well known models of SO(3). To emphasize and exploit 
this analogy, we discuss these classical models of SO(3) from a unified view point in 
section 2. We exhibit the logic of constructing and interrelating models and the close 
analogy with the techniques employed in gauge theories. We apply this analysis to 
SU(3)  in section 3. We recover the models available in the literature. We then pursue 
the analysis in sections 4 and 5 to construct type 111 models. 

J S Prakash and H S Sharatchandra 

2. Classical models of SO(3) from a unified view point 

SO(3) ( = SO(3, R ) )  is defined as the group of real 3 x 3 matrices of determinant +1 
acting on 3-tuple of real (or complex) numbers x = (x, , x2 , XJ and leaving the quadratic 
form 

x2 = x:+x:+x: (2.1) 
invariant. This gives the defining representation, where (x, , x2, x3) are regarded as 
components of a vector of a three-dimensional vector space V in some orthonormal 
basis. All other irreducible representations ( IR)  may be realized using direct products 
of V. In fact the I R  labelled by the angular momentum quantum number 1 may be 
realized on the space of homogeneous polynomials in x,, i = 1,2,3 of degree 1. Neverthe- 
less, the space P of all homogeneous polynomials in {xJ does not give a model space 
of S0(3), because various IRS appear with different multiplicities. The underlying 
reason is the invariant combination (2.1). A way to overcome this problem is as follows. 
The operator 

J2 J2 J2 

Jx: Jx: Jx: 
V2 = - +- + - 

commutes with the angular momentum operators J t ,  i = l , 2 , 3  and acting on 
homogeneous polynomials gives again homogeneous polynomials. Therefore, we may 
realize the I R  on the subspace H of homogeneous polynomials annihilated by V2, i.e. 
on the harmonic polynomials. Indeed, H provides a model space of SO(3). 
Homogeneous polynomials of the type x2 f(x,, x,, XJ are absent as a consequence of 
the harmonicity condition. We call this the type I model. 

This approach has been generalized to other compact Lie groups by Moshinsky 
141. Though it is easy and elegant to characterize type I models, it is not the best suited 
for applications. As a consequence of the constraints like (2.2) on the function space, 
it is difficult to realize the basis explicitly. 

An alternate way of avoiding multiplicity of the IRS is to impose the constraint 

x2= x:+x:+x: = K (2.3) 
where K is a constant, on the invariant (2.1). Choosing K = 1 for instance, we get a 
model realized on functions on a 2-sphere (i.e. spherical harmonics). This is type I1 
model. 
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Kramers [7] for SU(3), and Gelfand et al 191 for all compact Lie groups, have 
constructed type I1 models using certain symmetric spaces. In type I1 models, the 
function space is unrestricted, but one has to contend with constraints such as (2.3) 
on the variables. This complicates the basic functions. 

Remarkably, there is a way of removing disadvantages of both type I and I1 models, 
which, moreover, has a deeper mathematical significance. For this, one has to first 
choose the singular case K = O  for the constraint (2.3). Of course, we are now forced 
to choose xi to be complex variables. (The action of SO(3) is still with real coefficients 
on these complex variables.) However we now choose functions analytic in each x,. 
Thereby, each IR is again realized only once. 

With K = 0, we have a non-compact space, the quadric cone, instead of the compact 
2-sphere ( K  > 0). We can now solve the constraint (2.3) preserving homogeneity. To 
see this, we rewrite (2.3) as, 

(x, - ixz)(xl + ix2) + x i  = O  
which is identically satisfied by setting, 

x, + ix2 = 5' X, - ix2 = 7 x, = ii7. (2.4) 
As 5 and 7 take all complex values, every point of the cone is covered, twice, with 
(&7) and (-& -7) representing the same point. The model space is given by arbitrary 
functions in 5 and 7, invariant under (& 7)+(-& -7). 

It is well known that ( 5 , ~ )  transforms like the spinorial representation of SO(3). 
When we consider a linear SU(2) transformation of (5, T), x,, i = 1,2,3 defined via 
(2.4) transform linearly under the related SO(3) matrix. There is an intimate relation 
between the isotropy condition K = 0 and the spinorial representation as analysed in 
detail by Cartan [U]. 

The IRS of SO(3) are realized on homogeneous polynomials of even degree in l 
and 7. (By considering also the odd degree, we get a model of SU(2).) 5 and 1) are 
eigenstates of J, with eigenvalues *; respectively. Hence the basis states I jm) of the 
IRS are simply represented by the monomials lJ'"7j-" up to a normalization factor. 
This gives a type I11 model. 

The basis vectors can be explicitly constructed and are very simple in type I11 
models. Therefore this is well suited for applications. 

The analysis given above for obtaining and interrelating the models is exactly 
parallel to certain techniques used in the quantization of gauge theories. Consider 
quantum electrodynamics (without matter), as an example. The state of the system is 
described by the wavefnnctional + [A] of the vector potential AJX), i = 1,2,3. 
However, a single physical state may be described by many different wavefunctionals. 
In fact, two wavefunctionals which agree on the transverse part of every vector potential 
describe the same physical state. In order to remove this multiplicity, we may choose 
a subspace of the space of functions. This subspace is given by those wavefunctionals 
which satisfy the Gauss constraint: 

2 

a s  
44-41 = 0 

for every X. Here S/6A, is the functional derivative. (2.5) is the analogue of (2.2). This 
corresponds to type I model. 

It is difficult to work with constrained functionals as in the earlier case. Therefore 
a 'gauge fixing' procedure is often adopted. Because wavefunctionals which agree on 
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the transverse part of every vector potential are equivalent, we choose a representative 
from among the vector potentials with the same transverse part. An example is the 
'Coulomb gauge' which uses only vector potentials A ( X )  which satisfy 
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J 
C-A,(%)=O. ax, 

This is the analogue of (2.3). Now all wavefunctionals of A(%) (satisfying (2.6)) are 
permitted. This corresponds to type I1 model. 

Instead of working with constrained vector potentials such as (2.6), one may try 
to solve the constraint and use arbitrary wavefunctionals of the independent degrees 
of freedom. For example, one may use arbitrary functionals of transverse part AT(%) 
of the vector potential. This would correspond to type 111 models. 

3. Models of SU(3) 

We now use the analysis of section 2 to construct models of S U ( 3 ) .  We recover the 
models that have been presented in the literature. They correspond to type I and type 
I1 models. 

I n  the case of S0(3), all IRS could be built using one triplet {x,} alone. This is not 
possible in the case of SU(3). We need [4] at least two triplet representations of SU(3) .  
An easy way to see this is as follows. A general Young tableaux for SU(3) has two 
rows of boxes, at the most. Consider Young tableau with just one row. The correspond- 
ing tensors are totally symmetric in the indices (each of which can take values 1,2 or 
3). Such a tensor is simply represented by homogeneous polynomials in (z ' ,  z2, 2') 

transforming like 2 of SU(3). Such a polynomial is automatically totally symmetric. 
In the case of tableau with two rows, the corresponding tensors are antisymmetric in 
indices along a column. To be able to construct polynomials with this antisymmetry, 
we need one more triplet. 

Instead of using a pair of 2 representations, one may use [5,6,8] one 3 and one 
2'. Though equivalent, the latter turns out to be more convenient, and will be used 
below. 

The IRS of SU(3) are uniquely realized [13] on tensors T ~ ~ : : . ~  (i, j = 1,2,3) which 
are totally symmetric in the contravariant indices and in the covariant indices and are 
moreover traceless with respect to the contraction of any contravariant with any 
covariant index. Such tensors are easily mimicked [5,6, 141 by polynomials 
homogeneous in (z ' ,  z2, 2') and in ( w l ,  w2, w3)  of degrees M and N respectively. 
PK(zi, W,) 'Z i 'Z i l  ... Zi"Wj,Wj l . . .  WJ, 

+a,z .  w(6Az'z ... z i ~ w j > . . .  wj,+pennutations) 
+cu,(z. w)'(8jp2zi: .  . . z i ~ w ; ,  . . . w,,+permutations) 
+(higher powers of z '  w). (3.1) 

zi and w, transform like 3 and 3* respectively. The coefficients are to be chosen so as 
to satisfy the tracelessness condition. This algebraic constraint may be equivalently 
stated as a differential constraint, [4,5] 

This is a type I model. We may also identify w: = z i  in this construction. 
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It is cumbersome to compute the coefficients a,, az, . . . and to work [5,6,14] with 
the polynomials (3.1). A way out is to note that the functions (3.1) are uniquely 
distinguished by their values on the constrained surface, 

C z’w, = K (3.3) 
i= I 

where K is any complex number. The tensorial property of (3.1) is not affected because 
the constraint (3.3) is invariant under SU(3) transformations. For K # 0, the con- 
strained space is a quadric in six-dimensional affine space. With wT = z’, we have a 
5-sphere. Considering all functions, complex analytic and real respectively, on these 
spaces, we get a type I1 model [7, 9, 151. 

4. A new model: explicit basis using polynomials in five variables 

We now proceed to construct type I11 models for SU(3) which are not available in 
the literature. As in the SO(3) case, we make the singular choice K = 0 in (3.3), which 
gives the quadric cone [16]. Now all terms, except the first, in the tensors (3.1) drop 
out. Therefore we may obtain a basis for the model space by considering arbitrary 
polynomials homogeneous in {z’} and {wJ} and identifying those that agree on the 
surface z. w = 0. There is a very easy way of solving this constraint to get a simple 
basis for the IRS. We simply eliminate w, in favour of the other variables: 

z 1  w, + zZw2 
W ,  = 

z3 (4.1) 

This preserves homogeneity in ( w l ,  wz) and ( z ’ ,  z2, 2’) separately. 
In order to obtain an explicit basis for each IR, we proceed as follows. An IR may 

be labelled by the numbers ( M ,  N ) .  Here M is the number of columns with one box 
each and N is the number of columns with two boxes in each column. Noting that a 
2-column Young tableau corresponds to the 3* representation, we see that the IR 
( M ,  N )  can be realized in the space of polynomials PE spanned by the monomials 

with 
( Z ’ ) M ~ ( Z 2 )  M z ( z 3 )  ~ 3 ( W I ) N l ( W 2 ) N q W 3 ) N 3  (4.2) 

M I  + Mz+ M3= M NI+ N2+ N3= N. (4.3) 
This space also contains some other IRS (MI N ; )  with M ’ <  M, N’< N. This is because 
of the possibility of forming the invariant combination z w. This also means that on 
the surface z .  w=O, these other IRS drop out. 

We now regard w, as a function of the other live variables, equation (4.1). To get 
an explicit basis now, we note that (z’, 2’) and ( w l ,  w2) transform like 2 and 2* (which 
is equivalent to 2) representations of the isospin SU(2) subgroup of SU(3). The 
combination ( z ’ a  +z’wz) in (4.1) is an isospin singlet as it should be, because z3 and 
w3 are also singlets. This combination suggests a change of basis in (4.2) as follows. 

Consider the generating function, 
(az’+  bz’)” 

of homogeneous polynomials in z1 and z2 of degree 2j. Irreducible representation 
corresponding to isospin j is realized on this space. The coefficient of apbq represents 
(up to a normalization), the state Ijm) where 

2 j = p + q  2m=p-q. (4.4) 
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Thus the generating function (az’-;-bz2)2’ (cw, + dw,)”’ corresponds to the direct 
product of two I- j and j ’  of isospin. We may now make a change to the coupled 
basis. W e g e t e a c h o f t h e i ~ j ” = ( j + j 3 , ( j + j ’ - l ) ,  ..., andlj-j’lonce.Thegenerating 
function for a specific IR j” is 

J S Prakash and H S Sharatchandra 

( z l w l  + 2Zw2)k(az’ + bz2)’j-*(aw, - bw,)2y-k (4.5) 
where the non-negative integer k is given by 

k = j + j ’ - j “  min(2j, 2j‘) 2 k 0. (4.6) 
A basis state Ijym‘’)  of the coupled basis is represented by that polynomial in z’, zz, 
wI and w2 which is the coefficient of the monomial apb9 in (4.5). The choice of p and 
q for given j” and m” is as in (4.4). 

It is convenient to relabel the powers in (4.5) as follows. Define, 

R I  =j‘+j”-j 2 - ~  +j-f R,  = j + j ’ -  I .  ‘n (4.7) R - . ! I  

These are the variables which appear in the Regge symmetries of the 3 -j symbol. For 
any given j and j‘ and all allowed values of j” ,  Rj’s are non-negative integers. Further, 
every choice of j and j‘ and any j“ of the direct product is uniquely reproduced as R i ,  
i = 1,2,3 take all non-negative integer values. Using these variables, (4.5) is 

(z’ w ,  +z2w2)R3(az’+ 6 ~ ~ ) ~ 2 ( a w ~ -  b ~ , ) ~ ! .  (4.8) 

M I  + Mz = 2j NI + N 2 =  2j‘ (4.9) 

Now we consider the subspace spanned by 

in the space P E  of the polynomials (4.2). In this subspace we make a change of basis 
(4.7). We get basis vectors as coefficients of the monomials aPb4 in 

( z’wl + z2w2)”3(az1 + bz’)R2( awl - bwJRL( 2’)”q w,) N3. (4.10) 

This basis is equivalent to (4.2) as R I ,  R 2 ,  R,, M ,  and N3 range’ over non-negative 
integers. From (4.3) and (4.6) we see that an IR ( M ,  N )  of SU(3) may be realized in 
the space of polynomials spanned by all non-negative integers R , ,  R,, R , ,  MI and 
N,  such that 

(4.11) 

We are now in a position to extract explicit and distinct basis vectors on the constrained 
surface 2 .  w =O. Making the replacement (4.1) in (4.7) we get 

(4.12) 

where R , ,  R 2 ,  R,, M,,  N,aO.  
We see that (4.11) is indistinguishable for distinct (non-negative) values of M,,  N, 

and R, such that 

K = R,  + N, H = R 3 + M 3  (4.13) 

are the same. This is the way that equivalent IRS contained in the space P E  get 
identified on the surface z ‘  w=O.  Using the new variables (4.12), a given I R  ( M ,  N )  
is spanned by 

R2+ R,+ M,  = M R ,  + R, + N, = N. 

(z’ w1 + z 2 ~ 2 ) R 3 + N 3 ( a z 1  + bz’)R2(aw2 - bw,) R 1 ( ~ 3 ) M ~ - N 3  

Z 1 W 1 + Z 2 W ~  ( 23 ) ( a z ’ + b ~ ~ ) ~ ~ ( a w ~ - b w ~ ) ~ ~ ( z ~ ) ~  (4.14) 

where RI, R2,  H and K are non-negative integers subject to the constraints 
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R 2 + H = M  R I +  K = N. (4.15) 

Considering all non-negative values of R I ,  Rz ,  K and H subject to the constraints 
(4.15) and collecting the coefficients of various monomials aPb4 in (4.14), we get an 
explicit basis for the IRS of SU(3). The states are labelled byp, q, R , ,  R, ,  H, K subject 
to the constraint (4.16). In fact we have realized the basis used in the quark model 
(i.e. the Gelfand-Zetlyn scheme). As we have used the coupled basis for isospin, we have 

2 I = R , + R , = p + q  213 = p - q (4.16) 

where I is the isospin quantum number and 1, is the eigenvalue of the third component 
of the isospin. Further noting that 2’ has strangeness S = -1, whereas (z ’ ,  z’), (w,, wz) 
have S = 0, we get 

S = K - H .  (4.17) 

5. Model space using spinor of SO(6) x SO(3.1) 

In case of S 0 ( 3 ) ,  type I11 model involves a doublet ( z ’ , z 2 )  of complex variables 
transforming as the spinor of SO(3). We now give an analogous construction for S U ( 3 ) .  

In section 4, we solved the constraint z ’  w=O by regarding w3 as a dependent 
variable. But this has the disadvantage that the variables z : ,  z ; ,  z3, wI and w, used in 
the model have nonlinear transformations under SU(3) .  Taking cue from the SO(3) 
case, we want to now solve this constraint in a different way. In fact we have to simply 
use the analysis of Cartan 1121 to generalize the notion of spinors of SO(3) to an 
arbitrary orthogonal group. 

We may regard z ‘  w=O as the condition that the vector (2, z2 ,z3 ,  w , ,  wz ,  w3)  in 
the Euclidean space E(6) be isotropic [12] (equivalently ‘null’), (Using variables 5;, 
where ~ ~ = & + i 5 ~ + ~ ,  ~ ; = 5 ~ - i & + ~ ,  i = l , 2 , 3 ,  we get the standard form Zf=,f;=O). 
Such vectors can be constructed using bilinears of spinors. In our case of six- 
dimensional vectors, the results are as follows (see [12] p 117). The semi- (equivalently 
‘chiral’) spinors have dimension Z6”-‘ =4. Consider two such, and T,,, (Y = 0,1,2,3. 
Then the following vector, formed as bilinear in 5 and 7, is isotropic. 

where the bars stand for determinant of the 2 x 2 array. 5- (and similarly vm) may be 
regarded as the homogenous coordinates of a point 5 in a projective space of three 
dimensions. The components (z’, wj) then have the interpretation as the Plucker 
coordinates of the line which joins the two points 5 and 7. 

It is useful to rewrite (5.1) using the terminology of three-dimensional vectors: 

= 50s - 706 w = . $ x q  (5.2) 

where 6 = (&, t2, t3) etc. Thus z is in the plane spanned by 6 and q whereas w is 
perpendicular to this plane. Now it is also easy to verify that every isotropic 6-vector 
is obtained as we consider all complex valued 5. and 7.. We may simply choose the 
special case 7,, = 0 and CO = 1. Then, z = q, which may be chosen arbitrarily. Further 
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for any z # 0, every vector perpendicular to it can be obtained by considering 6 x 9, 
with 5 an arbitrary vector. (For the special case z = 0, we may choose to= v0 = 0 and 
8 and q as arbitrary vectors.) 

It is to be observed that we have solved for six variables, (d, w, )  involving one 
constraint using eight variables (&, q*). Therefore it is to be expected that many 
distinct pairs of spinors &, and q. reproduce a single isotropic vector. It is also easy 
to characterize such equivalent pairs. w is perpendicular to the plane spanned by 6 
and 1). Therefore we may hope to reproduce the same w by choosing other vectors 
and 9' in the same plane, i.e. 
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f = a S + P v  9 ' = Y 5 + S S  (5.3) 

with complex numbers a, p, y and S. We have x 9' = 6 x 1) if 

Further if (to, qo) also transforms like (C, v,), i.e. 

(5.4) 

then z = foq - q a t  is also left invariant. Thus if we regard the two SO(6, C )  spinors 
5, and q. as four doublets, U, =(to, qe), (Y = 1,2,3 or 0, then a common SL(2 ,  C )  
transformation of these four doublets leaves (z', w j )  invariant. 

Each doublet U,, a = 1,2,3 or 4 may be therefore regarded as a spinor of the 
Lorentz group SO(3,l). Thus the eight objects (&, 7.) form a spinor of the direct 
product SO(6) x SO(3,l). We have expressed an arbitrary isotropic 6-vector as a 
bilinear of this spinor. The vector so obtained is invariant under SO(3,l) transforma- 
tions of the spinors. 

The SU(3) group under which z and w transform like 2 and 2* is a subgroup of 
SO(6) under which z .  w = 0 is invariant. Therefore the spinors & and q. also transform 
as representations of SU(3). It is easy to read off these transformations from (5.3). If 
6 and 9 each transform as 3 and to and va as singlets of SU(3) ,  then z and w have 
the right transformation properties. 

Thus our model using spinors is closely related to Moshinsky's (type I) model [4] 
which uses a pair of 2 representations. We have in addition, two singlets to and qo. 
As a result, we have a larger symmetry SO(6) x SO(3,l) .  This addition is not just a 
redundancy. The advantage is that we can now construct explicit basis vectors using 
objects which transform linearly under SU(3) .  One way of doing this is to simply 
substitute for zl, zz, z3, wI and w, in (4.14), bilinear expressions in spinors. This basis 
will be developed further elsewhere. 

6. Discussion 

Our aim in this paper is to generalize certain techniques available for SU(2) to SU(3) 
(and other Lie groups) so as to make them as accessible as S U ( 2 )  is for applications. 
For this purpose we construct the classical models of SO(3) from first principles and 
show how they are related to one another. We point out close analogy with different 
methods of quantization ofgauge theories. We apply this analysis to SU(3) .  We recover 
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models available in the literature and construct new models. Our new models are the 
analogues of the Schwinger-Bargmann model of SO(3) which uses the spinorial 
representation. We have simple and explicit realizations of basis vectors of irreducible 
representations of SU(3), analogous to the monomial basis of Bargmann. 

The analogy with gauge theories can be put to use in other ways. For instance, the 
ERST techniques may be employed and also a cohomology interpretation may be given. 

We will use the techniques of this paper to construct a generating function for the 
Clebsch-Gordan coefficients of SU(3) elsewhere. 
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